Synthesis and Structure Determination of $\mathrm{Sm}_{3} \mathrm{NbSe}_{3} \mathrm{O}_{4}$

A. Meerschaut, C. Boyer, A. Lafond, L. Cario, and J. Rouxel
Laboratoire de Chimie des Solides, UMR-CNRS 110, Institut des Matériaux de Nantes, 2 rue de la Houssinière, B.P. 32229, 44322 Nantes Cedex 03, France

Received July 9, 1997; in revised form December 2, 1997; accepted December 15, 1997
$\mathrm{Sm}_{3} \mathrm{NbSe}_{3} \mathrm{O}_{4}$ has been synthesized and its structure determined. The following crystal data were obtained: $M_{\mathrm{r}}=\mathbf{8 4 4 . 8 4}$ $\mathrm{g} \cdot \mathrm{mol}^{-1}$, orthorhombic, Pnma, $a=6.8943(4) \AA, b=7.7529(8) \AA$, $c=14.7644(12) \AA, V=789.2(1) \AA^{3}, Z=4, D_{\mathrm{x}}=7.111 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$, МоК $\alpha, \lambda=0.71073 \AA, \mu=372 \mathrm{~cm}^{-1}, F(000)=1444, T=295 \mathrm{~K}$, $R=0.035$ for 1466 unique reflections with $F_{0}>4 \sigma\left(F_{\mathrm{o}}\right), 62$ variables, $\mathrm{GoF}=0.818$. The structure of $\mathrm{Sm}_{3} \mathrm{NbSe}_{3} \mathrm{O}_{4}$ was determined by single-crystal X-ray diffraction. Two distinct types of polyhedra can be distinguished: a very distorted one with eight surrounding atoms (four O and four Se atoms) around $\mathrm{Sm1}$ and Nb , and a bicapped trigonal prismatic one around Sm 2 . The crystal structure of this new compound can be described on the basis of corrugated planes perpendicular to the c axis. These planes are built up from edge-sharing trigonal prismatic polyhedra (Sm 2); connection between successive planes is achieved through the distorted polyhedra which surround atoms Sm 1 and Nb. © 1998 Academic Press

INTRODUCTION

Compared to the very large number of reported ternary oxides or ternary chalcogenides of lanthanides and transition metals, relatively few corresponding oxychalcogenides are known. This latter class of compounds has to be distinguished from the sulfoxides or selenoxides which contain chalcogen-oxygen bonds; in oxychalcogenide compounds, $X(\mathrm{~S}, \mathrm{Se})$ and O atoms are directly bonded to the metal atoms. The crystal chemistry of compounds with a low sulfur content (with respect to the oxygen content) is related to that of pure oxides, i.e., a strong ionic character leading in general to a more pronounced 3D structure type than in the corresponding pure chalcogenide homologues.

Focusing only on the quaternary $\mathrm{La}-\mathrm{Ti}-\mathrm{S}-\mathrm{O}$ system, new compounds have been recently characterized. The more oxygen-rich oxysulfides are $\mathrm{La}_{4} \mathrm{Ti}_{3} \mathrm{~S}_{4} \mathrm{O}_{8}$ and $\mathrm{La}_{6} \mathrm{Ti}_{2} \mathrm{~S}_{8} \mathrm{O}_{5}$ (1). Examples with a very low oxygen content include $\mathrm{Sr}_{5.8} \mathrm{La}_{4.4} \mathrm{Ti}_{7.8} \mathrm{~S}_{24} \mathrm{O}_{4}$ and $\mathrm{La}_{14} \mathrm{Ti}_{8} \mathrm{~S}_{33} \mathrm{O}_{4}$ (2) as well as $\mathrm{La}_{20} \mathrm{Ti}_{11} \mathrm{~S}_{44} \mathrm{O}_{6}$ (3), $\mathrm{Ce}_{20} \mathrm{Ti}_{11} \mathrm{~S}_{44} \mathrm{O}_{6}$ (4), and $\mathrm{La}_{8} \mathrm{Ti}_{10} \mathrm{~S}_{24} \mathrm{O}_{4}$ (5). The latter five phases, which have a much lower oxygen content than the first two, exhibit a common structural feature. Indeed, one can recognize a 2 D array of rutile-like
(edge-sharing) chains which cross perpendicularly to form a $\left[\mathrm{Ti}_{4} \mathrm{~S}_{2} \mathrm{O}_{4}\right]$ cluster in all five of these compounds. No structural relationship exists between the oxygen-rich and oxygen-poor compounds.

Here, we present the synthesis and structure of $\mathrm{Sm}_{3} \mathrm{NbSe}_{3} \mathrm{O}_{4}$, which corresponds to a situation with as much Se as O . This chemical composition is similar to that of $\mathrm{La}_{6} \mathrm{Ti}_{2} \mathrm{~S}_{8} \mathrm{O}_{5}$; i.e., they have an identical $L n / T$ ratio ($L n=\mathrm{La}, \mathrm{Sm} ; T=\mathrm{Ti}, \mathrm{Nb}$) and a comparable cation/anion ratio. However, as $\mathrm{Sm}_{3} \mathrm{NbSe}_{3} \mathrm{O}_{4}$ and $\mathrm{La}_{6} \mathrm{Ti}_{2} \mathrm{~S}_{8} \mathrm{O}_{5}$ have very different chalcogen/oxygen ratios, no structural relationships exist between them.

EXPERIMENTAL

Synthesis

The compound $\mathrm{Sm}_{3} \mathrm{NbSe}_{3} \mathrm{O}_{4}$ was synthesized as a side product in an attempt to prepare the $(\mathrm{SmSe})_{1+x} \mathrm{NbSe}_{2}$ misfit derivative (6). A mixture of elemental powders of Sm, Nb, and Se , weighted in stoichiometric amounts to get the misfit phase, was sealed in a quartz ampoule under vacuum $\left(p=2 \times 10^{-2} \mathrm{~atm}\right)$. The silica tube was not protected against reaction with the Sm by a carbon coating. The tube was progressively heated in a furnace to $1000^{\circ} \mathrm{C}$ and maintained at this temperature for 10 days. The intermediate product of the reaction was ground before a reheating at $1000^{\circ} \mathrm{C}$ with a small amount of $\mathrm{I}_{2}\left(<5 \mathrm{mg} \cdot \mathrm{cm}^{-3}\right)$ to promote crystallization. The tube was then air-quenched. The reaction yielded a mixture of black platelets of the misfit derivative and easily distinguishable orange-colored needles of this new phase. The source of oxygen is unknown but is most likely the reaction of Sm with the silica tube.

Semiquantitative chemical analyses on these crystals were carried out using an EDS-equipped scanning electron microscope. The EDS results from three distinct crystals (averaged atomic percentages) confirm the presence of oxygen and corroborate the structure composition of nonoxygen atoms as follows: $\mathrm{Sm}, 43.0$ (42.85); Nb, 16.3 (14.3); Se , 40.7 (42.85) (calculated values are in parentheses). The oxygen content was indirectly deduced from the interatomic distances where typical $\mathrm{Nb}-\mathrm{O}(\approx 1.90 \AA)$ and $\mathrm{Sm}-\mathrm{O}$ ($\approx 2.35 \AA$) distances are occurring.

Symmetry and Unit Cell Parameters

Preliminary investigation with the use of precession and Weissenberg X-ray photographic techniques indicated that this compound crystallizes with orthorhombic symmetry. A needle-shaped crystal with dimensions $0.22 \times 0.054 \times$ $0.030 \mathrm{~mm}^{3}$ was mounted on an Enraf-Nonius CAD4 diffractometer using MoK α radiation. The crystal orientation matrix was determined from 25 reflections in the

TABLE 1
Experimental Conditions

	Crystal Data
Chemical formula	$\mathrm{Sm}_{3} \mathrm{NbSe}_{3} \mathrm{O}_{4}$
Chemical formula weight	
Cell setting	Orthers
Space group	Pnma
$a(\AA)$	$6.8943(4)$
$b(\AA)$	$7.7529(8)$
$c(\AA)$	$14.7644(12)$
$V\left(\AA^{3}\right)$	$789.17(11)$
Z	4
Temperature (K)	293
$\rho_{\text {cal }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	$7.111(1)$
$\mu\left(\mathrm{mm}^{-1}\right)$	37.2
Crystal shape	Needle
Crystal color	Orange
Crystal size $\left(\mathrm{mm}^{3}\right)$	$\approx 0.054 \times 0.22 \times 0.030$,
	bounded by faces
	$\{100\},\{010\}$, and $\{001\}$

range $5.52^{\circ}<\theta<19.65^{\circ}$. Table 1 lists the experimental conditions for data collection. The unit cell parameters were refined from 25 arbitrarily chosen higher order reflections $\left(26.70^{\circ}<2 \theta<55.88^{\circ}\right)$ using the CELDIM program. From a refinement with the constraints $\alpha=\beta=\gamma=90^{\circ}$, one obtains $a=6.8943(4) \AA$, and $b=7.7529(8) \AA, c=$ 14.7644(12) Å.

Structure Refinement

A total of 7081 reflections were collected in the range $1.5^{\circ}<\theta<35^{\circ}(-11<h<11,-12<k<12$, and $0<l$ <23). The data were corrected for Lorentz-polarization effects and for absorption (faces indexed). The observed systematic conditions ($0 k l, k+l=2 n ; h k 0, h=2 n$) are compatible with the space groups Pnma (No. 62) and Pn2 ${ }_{1} a$ (No. 33). Intensity statistics favored the centrosymmetric space group Pnma. An R index of 0.0683 resulted from the averaging of reflections; a total of 1727 unique reflections ($F_{\mathrm{o}}>0$) were used for the refinements.

The structure was solved by direct methods (and subsequent difference-Fourier analyses) and refined by fullmatrix least-squares techniques from the SHELXTL program (7). All atoms were refined anisotropically and a secondary extinction parameter was included. The final cycle of the least-squares refinement gave agreement factors of $R=0.035$ for $1466 F_{\mathrm{o}}>4 \sigma\left(F_{\mathrm{o}}\right)$ and 0.045 for all 1727 data, $w R=0.111$, and $\mathrm{GoF}=0.818$. The final electron density map with coefficients $F_{\mathrm{o}}-F_{\mathrm{c}}$ shows maximum and minimum peaks at 4.46 and $-3.84 \mathrm{e} \AA^{-3}$, respectively; the highest peaks are found within $0.8 \AA$ of the samarium atoms. Atomic coordinates and anisotropic thermal parameters are listed in Tables 2 and 3, respectively.

RESULTS

The needle axis for any investigated crystal of this phase corresponds to the b axis. The Bragg photograph taken for

TABLE 2
Positional Parameters and Equivalent Isotropic Displacement Parameters for $\mathbf{S m}_{3} \mathbf{N b S e}_{3} \mathbf{O}_{4}$

Atom	Site	x	y	z	$U_{\mathrm{eq}}{ }^{a}\left(\AA^{2}\right)$
Sm 1	$4 c$	$0.78130(7)$	$\frac{1}{4}$	$0.58276(3)$	$0.00562(13)$
Sm 2	$8 d$	$0.21486(5)$	$-0.00680(4)$	$0.65383(3)$	$0.00679(12)$
Nb	$4 c$	$0.82588(13)$	3	$0.56850(6)$	$0.0058(2)$
Se 1	$4 c$	$0.49523(15)$	$\frac{1}{4}$	$0.72884(7)$	$0.0074(2)$
Se 2	$4 c$	$0.55039(14)$	3	4	$0.70307(7)$
Se 3	$4 a$	$\frac{1}{2}$	0	2	$0.0073(2)$
O 1	$4 c$	$0.8575(10)$	3	$0.0223(3)$	
O 2	$8 d$	$0.8854(8)$	$-0.0287(7)$	$0.6132(4)$	$0.0120(10)$
O 3	$4 c$	$0.1323(10)$	$\frac{3}{2}$	$0.5694(5)$	$0.0083(13)$

[^0]TABLE 3
Anisotropic Thermal Parameters for $\mathbf{S m}_{3} \mathbf{N b S e}_{3} \mathbf{O}_{4}$

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Sm1	0.0050(2)	0.0059(2)	0.0059(2)	0	0.00038(15)	0
Sm2	0.0055(2)	0.0065(2)	0.0084(2)	$-0.00025(10)$	0.00039(10)	-0.00004(10)
Nb	0.0059(3)	0.0068(4)	0.0047(3)	0	0.0004(3)	0
Se1	0.0055(4)	0.0096(4)	0.0070(4)	0	$-0.0008(3)$	0
Se 2	0.0057(4)	0.0086(4)	0.0074(4)	0	$-0.0004(3)$	0
Se3	0.0190(6)	0.0371(8)	0.0107(5)	$-0.0101(5)$	0.0069(4)	$-0.0208(5)$
O1	0.009(3)	0.004(3)	0.005(3)	0	-0.002(2)	0
O 2	0.006(2)	0.014(3)	0.017(3)	0.000(2)	-0.004(2)	0.001(2)
O3	0.004(3)	0.010(3)	0.011(3)	0	-0.001(2)	0

a crystal rotating along this axis shows layer lines of strong intensities (for $k=0,2, \ldots$) and of very weak intensities (for $k=1,3, \ldots$). The atomic coordinates (Table 2) show that the y coordinates for all atoms are either around $0, \frac{1}{2}$ or strictly $\frac{1}{4}, \frac{3}{4}$. Thus, along the b direction, several of the same atoms are separated by approximately $b / 2(\approx 3.8 \AA)$ because of symmetry (for instance, x, y, z and $x, \frac{1}{2}-y, z$ when $y \approx 0$), a condition that occurs for sites $8 d(\mathrm{Sm} 2, \mathrm{O} 2)$ and $4 a(\mathrm{Se} 3)$. Otherwise, for $y=\frac{1}{4}$ and $\frac{3}{4}$, other pairs of atoms not related by symmetry are roughly juxtaposed along this b direction, for example, $\mathrm{Sm} 1 / \mathrm{Nb}, \mathrm{Se} 1 / \mathrm{Se} 2$, and $\mathrm{O} 1 / \mathrm{O} 3$. The crystal structure of $\mathrm{Sm}_{3} \mathrm{NbSe}_{3} \mathrm{O}_{4}$ viewed down the b axis is shown in Fig. 1.

FIG. 1. Projection of the structure of $\mathrm{Sm}_{3} \mathrm{NbSe}_{3} \mathrm{O}_{4}$ onto the (a,c) plane; all atoms have $0 \leq y \leq 1$.

Interatomic distances are given in Table 4 for distinct polyhedra around the metal atoms $\mathrm{Sm} 1, \mathrm{Nb}$, and Sm 2 .

The Sm atoms in $\mathrm{Sm}_{3} \mathrm{NbSe}_{3} \mathrm{O}_{4}$ are eight-coordinate. Atom Sm 1 is surrounded by four O atoms and four Se atoms: two O atoms (O 1 and O 3) and two Se atoms $(\mathrm{Se} 1$, Se1'), all at $y=\frac{1}{4}$, describe a quadrilateral base with Sm 1 also at $y=\frac{1}{4}$ in a very excentered position; two $\mathrm{Se}[2 \times \mathrm{Se} 3$ $\left.\left(y=0, \frac{1}{2}\right)\right]$ and two $\mathrm{O}\left[2 \times \mathrm{O} 2\left(y=0, \frac{1}{2}\right)\right]$ atoms lie in a perpendicular plane (see Fig. 2a).

As the Nb atom is found at about the same x, z coordinates as $\operatorname{Sm} 1$, but shifted by $b / 2$, the coordination around Nb is quite similar to that of Sm 1 since all its surrounding atoms have also an "equivalent" one shifted by $b / 2$ (see Fig. 2b). The only difference within this polyhedron is a much longer $\mathrm{Nb} 1-\mathrm{Se} 2$ distance $(3.711 \AA$) than the corresponding Sm1-Se1 distance $(3.148 \AA)$ within the Sm 1 polyhedron. Thus, Nb is seven-coordinate rather than eightcoordinate.

The Sm 2 atom is in a trigonal prism of four Se (two Se1, two Se 2) and two $\mathrm{O}(\mathrm{O} 1, \mathrm{O} 3)$ atoms which is bicapped by O 2 and Se 3 (Fig. 2c). Adjacent bicapped trigonal prisms around Sm 2 atoms are bridged via a common edge (Se1, Se 2) to form "corrugated planes" of polyhedra perpendicular to the c direction (Fig. 3). $\mathrm{Sm} 1 / \mathrm{Nb}$ atoms connect these successive planes through the four atoms $\left(\mathrm{Se} 1, \mathrm{Se}^{\prime}, \mathrm{O} 1\right.$, and $\mathrm{O} 3) /\left(\mathrm{Se} 2, \mathrm{Se} 2^{\prime}, \mathrm{O} 1\right.$, and O 3$)$ that constitute the quadrilateral base of the $\mathrm{Sm} 1 / \mathrm{Nb}$ polyhedron, respectively. The Se 3 atom plays a particular role in the connection between both types of polyhedra [Sm1 (or Nb) and Sm 2$]$. The Se 3 atoms are at the center of an octahedron of metal atoms, with Sm 2 as the vertices, the "square plane" being constituted with two Sm1 and two Nb atoms.

Given the chemical composition $\mathrm{Sm}_{3} \mathrm{NbSe}_{3} \mathrm{O}_{4}$, charge balance requires $\mathrm{Sm}(\mathrm{III})$ and $\mathrm{Nb}(\mathrm{V})$ to compensate $\mathrm{Se}(\mathrm{II})$ and O (II) as no short $\mathrm{Se}-\mathrm{Se}$ bonding is present. Bond valence calculations roughly confirm these assumptions. The bond valence method is a semiempirical method that relates the valence for any atom to its coordination. Each bond is assigned a valence according to the equation

TABLE 4
Interatomic Distances and Bond Valences

[^1]$v_{i j}=\exp \left[\left(R_{i j}-d_{i j}\right) / b\right]$, where $b=0.37$ is a universal constant, $d_{i j}$ is the interatomic distance, and $R_{i j}$ is the bond valence parameter tabulated by Brese and O'Keeffe (8). The valence of atom i is defined as the summation over all the interatomic bonds; i.e., $V_{i}=\sum v_{i j}$.

The lack of crystallographic data for this kind of structure with two cations (Sm and Nb) and two anions (O and Se) has probably led to bad estimated values of the tabulated $R_{i j}$ parameters for these bonds. This can explain the somewhat different results obtained for Sm 1 and $\mathrm{Nb}, 3.5$ and 4.65 , respectively (see Table 4), compared with the expected ones, i.e., 3 and 5, respectively. We can also notice that Sm1 and Nb atoms have about the same environment (just
shifted by $b / 2$); therefore, a hypothetical $\mathrm{Sm} / \mathrm{Nb}$ mixing within these sites could occur, which in turn should give bad calculations. However, such a mixing was not demonstrated through X-ray structure refinement.

The presence of $\mathrm{Nb}(\mathrm{V})$ was not expected in an oxyselenide derivative. However, in the search for parent compounds in the literature, we found mention of a compound with about the same chemical composition, $\mathrm{La}_{3} \mathrm{NbSe}_{2} \mathrm{O}_{4} \mathrm{~F}_{2}$ (9). Charge balance is achieved with the substitution of one Se atom by two F atoms. A careful examination of the reported structure, despite the fact that the space group is also Pnma and that the cell volume is about two times larger than that of $\mathrm{Sm}_{3} \mathrm{NbSe}_{3} \mathrm{O}_{4}$, does not show clear evidence of some

FIG. 2. View, projected along b, of the coordination environment of atoms (a) Sm 1 , (b) Nb 1 , and (c) Sm 2 found in $\mathrm{Sm}_{3} \mathrm{NbSe}_{3} \mathrm{O}_{4}$ (cation coordinates as in Table 2).

FIG. 3. Polyhedral representation of the "corrugated planes" of Sm2centered polyhedra stacked along \mathbf{c}.
structural relationship. Indeed, the crystal structure of $\mathrm{La}_{3} \mathrm{NbSe}_{2} \mathrm{O}_{4} \mathrm{~F}_{2}$ contains a distorted $\mathrm{NbO}_{5} \mathrm{Se}$ octahedron and three independent distorted $\mathrm{LaSe}_{x} \mathrm{O}_{y} \mathrm{~F}_{z}$ tricapped trigonal prisms. Nothing comparable can be found in $\mathrm{Sm}_{3} \mathrm{NbSe}_{3} \mathrm{O}_{4}$.

REFERENCES

1. J. A. Cody and J. A. Ibers, J. Solid State Chem. 114, 406 (1995).
2. L. J. Tranchitella, J. C. Fettinger, and B. W. Eichhorn, Chem. Mater. 8, 2265 (1996).
3. C. Deudon, A. Meerschaut, L. Cario, and J. Rouxel, J. Solid State Chem. 120, 164 (1995).
4. J. A. Cody, C. Deudon, L. Cario, and A. Meerschaut, Mater. Res. Bull. 32, 1181 (1997).
5. L. Cario, C. Deudon, A. Meerschaut, and J. Rouxel, J. Solid State Chem. 136, 46-50 (1998).
6. G. A. Wiegers and A. Meerschaut, Mater. Sci. Forum 100-101, 101 (1992).
7. G. M. Sheldrick, SHELXTL, Version 5, Siemens Analytical X-ray Instruments Inc., Madison, WI, 1994.
8. N. E. Brese and M. O’Keeffe, Acta Crystallogr., Sect. B 47, 192 (1991).
9. T. D. Brennan, M. F. Mansuetto, and J. A. Ibers, J. Solid State Chem. 107, 547 (1993).

[^0]: ${ }^{a} U_{\mathrm{eq}}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} a_{i} a_{j}$.

[^1]: ${ }^{a}$ Symmetry transformations used to generate equivalent atoms: (1) $x-1, y, z$; (2) $-x+1,-y+1,-z+1$; (3) $-x+2,-y+1,-z+1$; (4) $x-\frac{1}{2}$, $y,-z+\frac{3}{2} ;(5) x+1, y, z ;(6) x+\frac{1}{2}, y,-z+\frac{3}{2} ;(7)-x+1, y+\frac{1}{2},-z+1 ;(8) x,-y+\frac{1}{2}, z ;(9) x, y-1, z ;(10) x-\frac{1}{2}, y-1,-z+\frac{3}{2} ;(11) 1-x, y+\frac{1}{2}$, $1-z$; (12) $x, y+1, z$.

